Unit 1
Particles,
Quantum
Phenomena
and Electricity

5.4 Cells in series and parallel

Diodes in circuits

AS27

5.4 Cells in Series and Parallel

(i) Cells in series

- When cells are connected in series, the total emf is the sum of the emfs of each cell.
- The current through each cell is the same.

$$\mathit{cell\ current} = \frac{\mathit{cell\ emf}}{\mathit{total\ circuit\ resistance}}$$

• The 'lost volts' $\varepsilon - V = I(sum \ of \ internal \ resistances)$

(ii) Cells in parallel

- When identical cells are connected in parallel, the total emf is equal to the emf of each cell.
- The total current supplied is the sum of the currents through each. If there are *n* cells and the total current is *I*, the current through each cell is *I*/*n*.
- The total 'lost volts' is given by:

$$\varepsilon - V = \frac{I\eta}{\eta}$$

ε

Cells in series

Cells in parallel

Diodes in circuits

- In forward bias, a p.d. of 0.6 volts exists across a semiconductor diode if it is passing a current.
- In reverse bias, the diode has a near infinite resistance.

Unit 1 Particles, Quantum Phenomena and Electricity

5.5 The potential divider

AS27

5.5 The Potential Divider

The potential divider is a combination of two or more resistors in series. A power supply is connected across all the resistors and various p.d.s can be tapped of the combination. The resistors can be fixed or variable, giving a device which can provide a fixed output, a variable pd. output or an output p.d. that changes with some physical condition such as light level or temperature.

For the stepped output in figure 1,

$$V_{out} = \left(\frac{R_3}{R_1 + R_2 + R_3}\right) V_{in}$$

If one of the resistors in a potential divider combination is made variable, a continuously variable output can be achieved, as shown in figure 2.

$$V_{out} = \left(\frac{R_1}{R_1 + R_2}\right) V_{in}$$

Sensor circuits are often controlled by a potential divider in which the sensor, (a thermistor or light-dependent resistor, for example), is one of the resistors. The other resistor is variable to adjust the temperature or light level at which the sensor circuit switches on.

Fig 1

A-Level Revision Card AS27