A2 AQA
Unit 4 – SHM
D Ewart


 4.1c Further Mechanics
SHM & Oscillations
	Lessons
	Topics

	1 to 3
	Simple harmonic motion
Characteristic features of simple harmonic motion.

Condition for shm: a = − (2πf )2 x
X = A cos 2πf t and v = ± 2πf √(A2 − x 2)
Graphical representations linking x, v, a and t .

Velocity as gradient of displacement-time graph.

Maximum speed = 2πfA.
Maximum acceleration = (2πf )2 A.


	4 to 6
	Simple harmonic systems
Study of mass-spring system.  T = 2π√(m / k)
Study of simple pendulum. T = 2π√(l / g)
Variation of Ek, Ep and total energy with displacement, and with time.


	7 to 9
	Forced vibrations and resonance
Qualitative treatment of free and forced vibrations.

Resonance and the effects of damping on the sharpness of resonance.

Phase difference between driver and driven displacements.

Examples of these effects in mechanical systems and stationary wave situations



Oscillations (definitions)
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An oscillation is a repeated motion about a fixed point.

The fixed point, known as the equilibrium position, is where the oscillating object returns to once the oscillation stops.

The time period, T of an oscillation is the time taken for an object to perform one complete oscillation.

The amplitude, A of an oscillation is equal to the maximum value of the displacement, x

Frequency, f in hertz is equal to the number of complete oscillations per second.


also:  f = 1 / T
Angular frequency, ω in radians per second is given by:


ω = 2π f
or

ω = 2π / T
Simple Harmonic Motion
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Many oscillating systems undergo a pattern of oscillation that is, or approximately the same as, that known as Simple Harmonic Motion (SHM).

Examples 

(including some that are approximate):

A mass hanging from the end of a spring

Molecular oscillations

A pendulum or swing

A ruler oscillating on the end of a bench

The oscillation of a guitar or violin string

Tides 

Breathing

The pattern of SHM motion
The pattern of SHM is the same as the side view of an object moving at a constant speed around a circular path
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Conditions required for SHM
When an object is performing SHM:

1.  Its acceleration is proportional to its displacement  from the equilibrium position.

2.  Its acceleration is directed towards the equilibrium position.

Mathematically the above can be written: a = - k x
where k is a constant and the minus sign indicates that the acceleration, a and displacement, x are in opposite directions

Acceleration variation of SHM
The constant k is equal to (2πf )2 or ω2 or (2π/T)2
Therefore:


a = - (2πf )2 x        
(given on data sheet)

or

or

Q A body oscillating with SHM has a period of 1.5s and amplitude of 5cm. Calculate its frequency and maximum acceleration.

Displacement equations of SHM
The displacement, x of the oscillating object varies with time, t according to the equations:




x = A cos (2π f t)     given on data sheet

   or

x = A cos (ω t)

 or




x = A cos ((2π / T) t)

Note: At time, t = 0, x = +A

Q. A body oscillating with SHM has a frequency of 50Hz and amplitude of 4.0mm. Calculate its displacement and acceleration 2.0ms after it reaches its maximum displacement. 

Velocity equations of SHM
The velocity, v of an object oscillating with SHM varies with displacement, x according to the equations:


v = ± 2πf √(A2 − x 2)       given on data sheet

or


v = ± ω√(A2 − x 2)

or


v = ± (2π / T) √(A2 − x 2)

Q. A body oscillating with SHM has a period of 4.0ms and amplitude of 30μm. Calculate (a) its maximum speed and (b) its speed when its displacement is 15μm.

Variation of x, v and a with time  (see ppt animation)
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The acceleration, ax depends on the resultant force, Fspring on the mass.

Note that the acceleration ax is always in the opposite direction to the displacement, X.

SHM time graphs
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Note: 
The velocity curve is the gradient of the displacement curve  and the acceleration curve is the gradient of the velocity curve.

SHM summary table
	Displacement
	Velocity
	Acceleration

	+ A
	
	

	
	
	0

	
	0
	


SHM graph question
The graph below shows how the acceleration, a of an object undergoing SHM varies with time. Using the same time axis show how the displacement, x and velocity, v vary in time.
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The spring-mass system
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If a mass, m is hung from a spring of spring constant, k and set into oscillation the time period, T of the oscillations is given by:


T = 2π√(m / k)

AS Reminder: Spring Constant, k:
This is the force in newtons required to cause a change of length of one metre.



k = F / ΔL


unit of k = Nm-1
Q. A spring extends by 6.0 cm when a mass of 4.0 kg is hung from it near the Earth’s surface (g = 9.8ms-2). If the mass is set into vertical oscillation state or calculate the period (a) near the Earth’s surface and (b) on the surface of the Moon where g = 1.7 ms-2.
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The simple pendulum
A simple pendulum consists of:

· a point mass 

· undergoing small oscillations (less than 10°)

· suspended from a fixed support 

· by a massless, inextendable thread of length, L 

· within a gravitational field of strength, g

The time period, T is given by: 



T = 2π√(L / g)

Q. Calculate: (a) the period of a pendulum of length 20cm on the Earth’s surface (g = 9.81ms-2) and (b) the pendulum length required to give a period of 1.00s on the surface of the Moon where g = 1.67ms-2.

Free oscillation
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A freely oscillating object oscillates with constant amplitude.

The total of the potential and kinetic energy of the object will remain constant.

EP + EK = a constant

This occurs when there are no frictional forces acting on the object such as air resistance.

Energy variation in free oscillation
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Q. A simple pendulum consists of a mass of 50g attached to the end of a thread of length 60cm. Calculate: (a) the period of the pendulum (g = 9.81ms-2) and

(b) the maximum height reached by the mass if the mass’s maximum speed is 1.2 ms-1.

Energy variation with an oscillating spring
The strain potential energy is given by:

EP = ½ k x2

Therefore the maximum potential energy of an oscillating spring system
= 
= Total energy of the system, ET
But: ET = EP + EK
And so the kinetic energy is given by:
EK = 

EK = 
Energy versus displacement graphs

The potential energy curve is parabolic, given by:

EP = ½ k x2
The kinetic energy curve is an inverted parabola, given by:

EK = ½ k (A2 - x2)
The total energy ‘curve’ is a horizontal line such that: 

ET = EP + EK
Energy versus time graphs
Displacement varies with time according to:

x = A cos (2π f t)

Therefore the potential energy curve is cosine squared, given by:

EP = ½ k A2 cos2 (2π f t)

½ k A2 = total energy, ET.

and so: EP = ET cos2 (2π f t)

Kinetic energy is given by:

EK = ET - EP
EK = ET - ET cos2 (2π f t)

EK = ET (1 - cos2 (2π f t))

EK = ET sin2 (2π f t)

EK = ½ k A2 sin2 (2π f t) 
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Damping
Damping occurs when frictional forces cause the amplitude of an oscillation to decrease.

The amplitude falls to zero with the oscillating object finishing in its equilibrium position. 

The total of the potential and kinetic energy also decreases.

The energy of the object is said to be dissipated as it is converted to thermal energy in the object and its surroundings.

Types of damping

1. Light Damping

In this case the amplitude gradually decreases with time.

The period of each oscillation will remain the same.

The amplitude, A at time, t will be given by: 
A = A0 exp (- C t)

where A0 = the initial amplitude and 
C = a constant depending on the system (eg air resistance)

2. Critical Damping

In this case the system returns to equilibrium, without overshooting, in the shortest possible time after it has been displaced from equilibrium.

3. Heavy Damping

In this case the system returns to equilibrium more slowly than the critical damping case.

Forced oscillations
All undamped systems of bodies have a frequency with which they oscillate if they are displaced from their equilibrium position.

This frequency is called the natural frequency, f0.

Forced oscillation occurs when a system is made to oscillate by a periodic force. The system will oscillate with the applied frequency, fA of the periodic force.

The amplitude of the driven system will depend on:

1. The damping of the system.

2. The difference between the applied and natural frequencies.

Resonance
The maximum amplitude occurs when the applied frequency, fA is equal to the natural frequency, f0 of the driven system.

This is called resonance and the natural frequency is sometimes called the resonant frequency of the system.

Resonance curves
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If damping is increased then the amplitude of the driven system is decreased at all driving frequencies.

If damping is decreased then the sharpness of the peak amplitude part of the curve increases.

The amplitude of the driven system tends to be:

 - Equal to that of the driving system at very low  frequencies.

· Zero at very high frequencies.

-  Infinity (or the maximum possible) when fA is equal to f0 as damping is reduced to zero.

Phase difference
The driven system’s oscillations are always behind those of the driving system.

The phase difference lag of the driven system depends on:

1. The damping of the system.

2. The difference between the applied and natural frequencies.

At the resonant frequency the phase difference is π/2 (90°)
Phase difference curves
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Examples of resonance

· Pushing a swing

· Musical instruments (eg stationary waves on strings)

· Tuned circuits in radios and TVs

· Orbital resonances of moons (eg Io and Europa around Jupiter)

· Wind driving overhead wires or bridges (Tacoma Narrows)
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The time period of the oscillation is equal to the time taken for the object to complete the circular path.





The object moves quickest as it passes through the central equilibrium position.





The amplitude of the oscillation is equal to the radius of the circle.
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